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Abstract

Recent work in motor control demonstrates that humans take their own motor uncertainty into account, adjusting the timing
and goals of movement so as to maximize expected gain. Visual sensitivity varies dramatically with retinal location and target,
and models of optimal visual search typically assume that the visual system takes retinal inhomogeneity into account in
planning eye movements. Such models can then use the entire retina rather than just the fovea to speed search. Using a simple
decision task, we evaluated human ability to compensate for retinal inhomogeneity. We first measured observers’ sensitivity for
targets, varying contrast and eccentricity. Observers then repeatedly chose between targets differing in eccentricity and
contrast, selecting the one they would prefer to attempt: e.g., a low contrast target at 2u versus a high contrast target at 10u.
Observers knew they would later attempt some of their chosen targets and receive rewards for correct classifications. We
evaluated performance in three ways. Equivalence: Do observers’ judgments agree with their actual performance? Do they
correctly trade off eccentricity and contrast and select the more discriminable target in each pair? Transitivity: Are observers’
choices self-consistent? Dominance: Do observers understand that increased contrast improves performance? Decreased
eccentricity? All observers exhibited patterned failures of equivalence, and seven out of eight observers failed transitivity. There
were significant but small failures of dominance. All these failures together reduced their winnings by 10%–18%.
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Introduction

An average human eye has as many as 4.6 million cones in a

retinal area of 1019 mm2 [1] centered on the fovea but the

distribution of cones across the retina is far from uniform

(Figure 1A). As a consequence of retinal inhomogeneity and

post-receptoral processing [2], observer’s performance in psycho-

physical tasks can vary markedly with retinal eccentricity. This

variation can be summarized by a retinal sensitivity curve such as

the one shown in Figure 1B.

The retinal sensitivity curve in Figure 1B is a plot of the

probability of correct discrimination as a function of retinal

eccentricity. The observer attempted to discriminate two possible

configural targets (Figure 1C) consisting of a small circle

superimposed on a square. As shown, the observer’s probability

of correct discrimination is close to one when the target is near the

fovea and drops to chance beyond 12 degrees.

Retinal scaling curves for many kinds of visual judgments have

been measured [3–6] and researchers modeling visual search

typically assume that the visual system effectively has access to

estimates of visual sensitivity for different kinds of targets at

different eccentricities [7–10]. This information is needed to

correctly combine visual data from disparate retinal locations,

detect the target or plan the next saccade. Since the mapping

between eccentricity and visual sensitivity may differ for different

kinds of targets, the amount of information needed to plan visual

search well is potentially very large.

We examined whether human observers have access to this

information in a simple decision task. In the first part of the

experiment (calibration) we mapped retinal scaling curves for the

configural target at three contrasts, High, Medium and Low.

Targets were placed along a horizontal line passing through the

fovea and each target could be thought of as an ordered pair e,cð Þ
where e is horizontal distance from the fovea, c is contrast.

In the main part of the experiment (decision), the observers were

asked to judge which of two configural targets, differing in contrast

and in retinal eccentricity, e,cð Þ or e’,c’ð Þ, was more discriminable.

A judgment that e,cð Þ is/was more discriminable than e’,c’ð Þ is

denoted e,cð Þ] e’,c’ð Þ. Observers knew that, at the end of the

experiment, they would be allowed to attempt to classify some of

the targets they had chosen, receiving a reward for each correct

response. It was therefore in their interest to select the more

discriminable eccentricity-contrast pair on each trial.

Unlike typical decision tasks [11], this decision task does not

involve a tradeoff between probability and value: we never varied

the payoffs for success and failure. Successful performance requires

only that the observer correctly orders probabilities. Performance

would also be unaffected by monotone increasing transformations
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of probability commonly reported in the decision under risk

literature [11–13].

The decision task is an example of a conjoint measurement task

[14–15]. We vary contrast and eccentricity and see how these

variations affect the observer’s ordering of eccentricity-contrast

pairs e,cð Þ] e’,c’ð Þ by discriminability. If the observer’s judgments

satisfy certain conditions that, in effect, assess their coherence or

self-consistency, then the experimenter can potentially recover

estimates of the observer’s ‘‘subjective’’ retinal sensitivity curves for

each contrast [14–15] and compare them to observers’ actual

performance. If one or more of the conditions fail, then we further

conclude that the observer’s choices are not based on a coherent

model of their own retinal sensitivity.

We test the observer’s knowledge of his own ability to

discriminate such targets in three ways, illustrated in Figure 2A.

The first is a test of equivalence: Can observers correctly judge which

pairs e,cð Þ and e’,c’ð Þ are equally discriminable? We can represent

these pairs by indifference curves as shown in Figure 2A.

The second test is transitivity: for any choice of eccentricities

e,e’,e’’ and contrasts c,c’,c’’, if e,cð Þ] e’,c’ð Þ and e’,c’ð Þ] e’’,c’’ð Þ,
then e,cð Þ] e’’,c’’ð Þ. Transitivity is a test of the self-consistency or

coherence of observers’ judgments.

The third is a test of dominance: if cwc’, does the observer

correctly judge that e,cð Þ] e,c’ð Þ for any choice of eccentricity e?

And if eve’, does the observer correctly judge that e,cð Þ] e’,cð Þ
for any choice of contrast c? (Of course, we must verify

experimentally that the two dominance claims are in fact true

for our experimental conditions). Dominance is evidently the

weakest of the three tests.

The three tests are distinct: an observer who fails equivalence may

still satisfy transitivity and dominance. This outcome would imply

that, while his or her estimates of discriminability are in error, the

estimates he or she has do, at least, cohere. An observer who fails

transitivity cannot trade off contrast and eccentricity in any

consistent way, but he or she may still know that more contrast

improves performance and that performance near the fovea is better.

Methods

Ethic statement
The experiment had been approved by the University

Committee on Activities Involving Human Subjects (UCAIHS)

of New York University and informed consent was given by the

observer prior to the experiment.

Apparatus
Stimuli were displayed on a 19-in. Sony Trinitron Multiscan

G500 monitor controlled by a Dell Pentium D Optiplex 745

computer. The monitor was run at a frame rate of 100 Hz with

128061024 resolution in pixels. A forehead bar and chinrest were

used to help the observer maintain a viewing distance of 57 cm. At

that distance, the full display subtended 40.4u630.3u. The

observer viewed the display binocularly.

Monitoring fixation
Observers were required to fixate a fixation cross and all stimuli

were presented relative to this fixation cross. We used an Eyelink II

eye tracker to verify that observers did not make eye movements

away from the fixation cross. At the beginning of each trial drift

correction was made at the fixation cross. The criterion of eye

movement was set to be a speed over 10 deg/s or an offset over 1

deg from the fixation cross. A trial would be cancelled if the

fixation constraint were violated during the trial. The eye tracker

was calibrated initially, drift corrected for each trail and re-

calibrated after every 100 trials or when drift exceeded 5 deg.

Stimuli
Stimuli were presented against a uniform gray (39.1 cd/m2)

background. The fixation cross was black, spanning 0:60|0:60 at

the center of the screen. The target was a 10|10 lighter gray

(67.1 cd/m2) square with an even lighter gray dot of 0:160

diameter at its top or bottom. The luminance of the dot could be

74.4, 80.7, or 91.4 cd/m2, i.e., a contrast of 1:11, 1:20 or 1:36
relative to the square. We refer these three levels of contrast as low,

medium, and high contrast. The contrast c of a stimulus and the

eccentricity at which it was presented, formed an eccentricity-contrast

pair e,cð Þ.
Color codes and location cues. Each contrast was

associated with a colored cue, which was a filled circle of 0:60

diameter behind the fixation cross. The colors for the low,

medium, and high contrast were red, blue and white, respectively.

The location of target was cued by a 10|10black frame square at

the location of the would-be target. Targets or location cues were

located at 18 possible locations uniformly distributed in the range

of 0:80 to 17:50 to the right of the fixation cross.

Procedure and design
The experiment consisted of two three-hour sessions completed

on two successive days. Observers were advised to take a break

every about 350 trials and allowed to take breaks whenever

necessary. Each observer went through the two tasks in sequence:

calibration, then decision. The time courses of both tasks are

illustrated in Figure 2B.

Calibration task
The calibration task allowed us to map probability correct as a

function of eccentricity for each of the three contrasts. The observer’s

task was to decide whether the dot was at the top or at the bottom

(Figure 2B). Fixation was monitored. No feedback was given.

For each of the three contrasts, the target could appear at any of

18 possible locations, i.e., 18 possible eccentricities, evenly spaced

from 2u to 12.2u on the right of the fixation cross. There were five

blocks, in each of which each location of each contrast repeated for

six times, half top and half bottom, randomly mixed together. Each

observer completed 3 contrasts6540 trials = 1620 calibration trials.

Author Summary

Human ability to discriminate drops dramatically with
increasing distance from the center of vision. If you fixate a
word on a page, you likely can not read words a short
distance away. Because of this retinal inhomogeneity, we
need to move our eyes to search a scene. The efficiency of
search depends on how well the visual system compen-
sates for inhomogeneity in planning eye movements. We
used a simple decision task to find out what the observer
‘‘knows’’ about his or her own retina. We first measured
observers’ sensitivity for targets, varying contrast and
eccentricity. Observers then repeatedly chose between
targets differing in eccentricity and contrast, selecting the
one they would prefer to attempt: e.g., a low contrast
target at 2u versus a high contrast target at 10u. Could
observers correctly trade off contrast and eccentricity and
pick the more discriminable of the two targets? We found
that observers exhibited large, patterned errors in their
choices, making choices that were not even self-consistent.

Gambling in the Visual Periphery
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Before the experimental trials, there were 108 practice trials for

the first session and 12 practice trials for the second session. To

keep observers motivated, we rewarded observers with a bonus up

to $10 based on their overall probability correct in the calibration

task of each session.

The probability correct of the calibration task was fitted against

eccentricity with a Quick-Weibull psychometric function [16–17]:

y(e)~0:5z0:5 exp { e=að Þb
� �

ð1Þ

where a is a position parameter and b is a steepness parameter.

With Equation 1, we could compute the probability correct for

any eccentricity. We used these functions in the construction of

decision trials.

Decision task
We described the decision task in the Introduction. In this task,

observers chose between two targets of different combinations of

contrast and retinal eccentricity. But rather than using real targets, we

used a location cue and a color cue to indicate an eccentricity-contrast

pair. The observer’s task was to choose the target they preferred to

attempt later (Figure 2B). As in the calibration task, observers were

required to fixate the fixation cross before the response display.

Figure 1. Retinal inhomogeneity. A. The density of cone photoreceptors in the human retina. The density of cones is the highest at the
fovea and drops sharply with increasing eccentricity. Plotted data from Curcio et al. [1]. Eccentricity in millimeter was transformed into degree using
Drasdo and Fowler’s [44] curve for retinal eccentricity and areal magnification. B. Retinal scaling curve for one contrast and one observer. The
retinal scaling curve is a plot of probability of correct response as a function of retinal eccentricity in degrees of visual angle. Near the fovea the
observer is consistently correct while beyond 120 the observer is at chance. C. The calibration task. On each trial, one of two configurations (inset)
was displayed. The observer’s task was to judge which of the two configurations was presented. The contrast and retinal location (eccentricity) varied
from trial to trial.
doi:10.1371/journal.pcbi.1001023.g001
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There were two reasons why we did not use real targets to

signify eccentricity-contrast pairs. First, if observers had seen real

targets in a trial, they could base their decision on their immediate

perception of the targets, in effect simulating the visual judgment.

Second, with real targets, observers might mistake one contrast

condition for another.

Figure 2. Methods. A. Conjoint measurement: testing equivalence, transitivity, and dominance. In testing equivalence we used data
from the calibration phase of the experiment to compare the actual discriminability of eccentricity-contrast pairs that observers judged to be equally
discriminable. Observers could err in selecting equally discriminable pairs but still make judgments that were self-consistent. The contours shown are
examples of contours of equal discriminability. We tested self-consistency by testing transitivity. See text. The test of dominance evaluates whether
observers understood that, all else equal, higher contrast or lower eccentricity led to better performance. See text. B. Time courses of the
calibration and decision tasks. In the calibration task we measured retinal scaling curves for three contrasts. The observer learned to associate
each of the three contrasts with a color code (inset). In the decision task, the contrast of each e,cð Þ pair was signaled using color codes. Note that the
target contrasts in the inset legend are just for illustration and are considerably higher than those used in the experiment.
doi:10.1371/journal.pcbi.1001023.g002
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Observers learned the association between targets and cues at

the beginning of the experiment during the calibration task and we

verified that they had learned these associations by a short ‘‘quiz’’

before the decision task.

Observers knew that, at the end of the experiment, four of their

choices would be chosen at random and that they would attempt

to identify targets in the conditions corresponding to each choice.

A correct response would lead to a $5 reward. Correct response for

all of the four trials would result in a $20 bonus.

To measure the point of subjective indifference (equivalence)

between targets that differed in contrast, we used one-up, one-

down adaptive staircase procedures. In a staircase, one target of

one contrast was fixed in eccentricity and the target of the other

contrast varied in eccentricity. The fixed contrast in each staircase

had an eccentricity corresponding to a probability correct of 0.6,

0.7, 0.8, or 0.9 separately estimated for each observer based on

their calibration data. We estimated the eccentricity that the

observer considered to be equally discriminable for the variable

contrast. Each staircase consisted of 70 trials. There were 12

staircases (3 contrasts64 probabilities), randomly interleaved. That

is, 12 staircases670 trials = 840 staircase trials. Based on these

staircase trials, we tested equivalence and transitivity.

To test dominance, we included trials in which the two targets

had different eccentricities but the same contrast (equi-contrast trials),

or different contrasts but the same eccentricity (equi-eccentricity

trials). The possible contrasts were low, medium, and high. The

possible eccentricities were the eccentricities corresponding to a

probability correct of 0.75 for each of the three contrasts,

computed with the functions estimated in the calibration task for

the particular observer. The number of equi-contrast trials was 3

contrasts63 eccentricity combinations610 repetitions = 90. The

number of equi-eccentricity trials was 3 eccentricities63 contrast

combinations610 repetitions = 90 as well.

The 840 staircase trials and 180 dominance trials were mixed in

a random order, divided into three blocks and completed in the

second session after the calibration task. There were 24 practice

trials before the formal experimental trials.

Observers
Eight observers, four female and four male, participated. None of

them was aware of the purpose of the experiment. All observers had

normal or corrected-to-normal vision. The observers each received

US $12/hour for their time and a performance-related bonus. Total

payment ranged from US $87 to US $112 across observers.

Results

Visual sensitivity curves
For each observer, we fit the data of the calibration task to Equation

1 separately for each contrast using the maximum likelihood method.

Figure 3 shows both the data and fit for each observer.

Equivalence test
From the 12 staircases of the decision task, we acquired 12 pairs

of eccentricity-contrast pairs judged to be equally discriminable

e,cð Þ* e’,c’ð Þ by the observer. Four of them had the target of low

contrast in fixed eccentricity and the target of medium contrast in

variable eccentricity, which we call a low-to-medium mapping.

Another four staircases were medium-to-high mappings and a

third set of four high-to-low mappings.

For each observer, we computed the differences between the

actual probabilities correct of the fixed and variable targets (based

on calibration data) and examined whether they significantly

deviated from zero. We used a bootstrap method [18] to estimate

95% confidence intervals for the probability difference of each pair

for each observer (10,000 resamples). We tested whether

differences in probability were significant at an overall level of

.05 with a Bonferroni correction for 12 tests.

Figure 4A shows the differences of probability correct in each

staircase separately for each observer. The vertical axis denotes

probability correct. Each arrowed line points from the fixed target to

the variable target. If a subjective indifference pair has identical

probability correct for the fixed and variable targets, the arrowed line

should be horizontal. Slanted lines correspond to differences in

probability. Pairs with significant probability difference are in magenta.

We noticed that observers’ errors were not random in direction.

In Figure 4A, the magenta lines for the same observer deviate from

the vertical orientation either clockwise or counter-clockwise, but

never in both ways. This pattern is an indication that the observer

consistently overestimated or consistently underestimated the

effect of differences in contrast on visual sensitivity.

To verify this claim we computed probability difference of the

lower contrast target minus the higher contrast target averaged

across the 12 subjective indifference pairs for each observer.

According to two-tailed Student’s t-tests, all observers’ mean

probability difference was significantly different from zero (p,.05).

Among the eight observers, three overestimated the visual

sensitivity difference and the other five underestimated it.

We also measured observers’ errors in eccentricity. The correct

eccentricity of the variable target in a staircase was defined as the

eccentricity where the variable target had the same probability

correct as the fixed target. Eccentricity error of a subjective

indifference pair was the actual eccentricity of the variable target

minus the correct eccentricity. The absolute error averaged across

the 12 pairs was 1.6, 5.8, 1.9, 7.5, 2.2, 7.7, 6.4, and 5.0 degrees

respectively for S1–S8. Their median was 5.4 degrees. Therefore,

observers’ errors in the decision task were unlikely to be a

byproduct of lack of ability to discriminate eccentricity.

Transitivity test
In the equivalence test, we tested whether observers made

judgments consistent with their actual ability to classify stimuli

differing in contrast and eccentricity. They did not do so. Next we

examined whether observers’ judgments, even though in error,

were self-consistent by testing transitivity (one of the necessary

conditions for a conjoint measurement representation) as follows.

An observer’s judgments are transitive if and only if, for all choices

of eccentricities e,e’,e’’ and contrasts c,c’,c’’: if e,cð Þ] e’,c’ð Þ and

e’,c’ð Þ] e’’,c’’ð Þ, then e,cð Þ] e’’,c’’ð Þ. We test transitivity in a

slightly different form by measuring eccentricity-contrast pairs

e,cð Þ, e’,c’ð Þ that are judged equally discriminable. We denote

equal discriminablity as e,cð Þ& e’,c’ð Þ. We test the following: if

e,cð Þ& e’,c’ð Þ and e’,c’ð Þ& e’’,c’’ð Þ, then e,cð Þ& e’’,c’’ð Þ.
Suppose the function e’~CL?M eð Þ transforms any eccentricity

e at low contrast into an eccentricity e’ at medium contrast that the

observer judges to be equally discriminable. That is, the observer,

rightly or wrongly, judges e,cð Þ& e’,c’ð Þ. We refer to e’~CL?M eð Þ
as an equivalence transformation.

From the decision task, we can estimate the equivalence

transformations of low-to-medium, medium-to-high, and high-to-

low contrasts, respectively denoted as CL?M eð Þ, CM?H eð Þ, and

CH?L eð Þ. The criterion for transitivity is that transitivity holds,

CH?L CM?H CL?M eð Þð Þð Þ should transform e back to e, that is,

e~CH?L CM?H CL?M eð Þð Þð Þ ð2Þ

In our transitivity test, we assume that the subjective probability

Gambling in the Visual Periphery
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correct for a particular contrast, like the true probability correct, is

a function of eccentricity in the form of Equation 1. An

equivalence transformation from one contrast to another contrast

would then be linear on a log scale (see Text S1 for proof).

log e’~a1?2 log ezb1?2 ð3Þ

where e is the eccentricity for contrast 1, e’ is the eccentricity for

contrast 2, and a1?2 and b1?2 are parameters to be estimated.

If Equation 2 is satisfied, we should have

aL?MaM?H aH?L~1

bL?MaM?H aH?LzbM?H aH?LzbH?L~0
ð4Þ

Define A~aL?MaM?H aH?L{1, B~bL?MaM?HaH?LzbM?

HaH?LzbH?L. Testing for failure of transitivity requires only

that we test whether either of A and B is significantly different

from zero.

For each observer, we fitted Equation 3 separately for the low-

to-medium, medium-to-high, and high-to-low transformations.

With the estimated a :ð Þ’s and b :ð Þ’s we computed A and B. We

obtained the 95% confidence intervals (Bonferroni corrected for

two conditions) of A and B using a bootstrap method [18] by

resampling the staircase data for 10,000 times.

Only one observer (S5) passed the transitivity test. The

remaining seven observers’ mean A and B values were both

significantly different from zero. Interesting, all the seven

observers’ deviations had the same direction. That is, all the A’s

were less than zero (median across observers = 20.60). All the B’s

were greater than zero (median across observers = 1.06). If, for any

observer, A and B errors were independent and equally often

positive or negative, the probability for all the seven observers to

have a less-than-zero A and a greater-than-zero B would be

1=4ð Þ7~6|10{5. Therefore, the observed common pattern of

failure of transitivity is unlikely to be the result of measurement

error.

Figure 4B shows a sequence of transformations. The three axes

in each subplot represent the eccentricities of the low, medium,

and high contrasts in the log scale. For each observer, we start

from a specific eccentricity at the low contrast find the equivalent

eccentricity at the medium contrast, then we pass from medium to

high and then high to low. If the transformations satisfy

transitivity, we should return to the same eccentricity at the low

contrast axis after going through the three transformations, low-to-

medium, medium-to-high and high-to-low. If transitivity holds, we

stop after one set of three transformations (lowRmediumRhighR
low). If it does not we continue with a second set of three

transformations to make the pattern of intransitivity easier to

visualize.

Figure 4B illustrates the transitivity failure of seven out of eight

observers and their common pattern of failure. We move from one

axis to another axis in an arbitrary counter-clockwise way. Note

that all the observers that failed the transitivity test had plots that

tended to ‘‘corkscrew’’ outward. That is, when eccentricity is

transformed from low contrast to medium contrast and then to

high contrast, the resulting eccentricity difference between the low

and high contrasts tended to be larger than when they mapped

from low to high directly.

Dominance test
Observers failed the equivalence test and, with one exception,

the transitivity test. The dominance test is, in conjoint measure-

ment terms, a test that observer’s preferences form a weak order

satisfying single cancellation [15]. We are asking whether

observers, given two targets of equal contrast at different

Figure 3. Calibration task: Visual sensitivity curves. Probability of correct response is plotted against retinal eccentricity for each of three
contrasts. Each panel corresponds to one observer. Circles denote data. Solid lines denote the fits of Equation 1 to data. Red, blue, and gray
respectively denote low, medium, and high contrast.
doi:10.1371/journal.pcbi.1001023.g003
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eccentricities, judge the target with smaller eccentricity to be more

discriminable (equi-contrast dominance) and that, given two

targets at the same eccentricity, judge the target with higher

contrast to be more discriminable (equi-eccentricity dominance).

Figure 4C show the percentage of dominance errors for each

observer. For each observer and condition, we computed the 95%

confidence intervals for the percentage of errors by treating the

true proportion of errors as a random variable with a beta

distribution whose parameters are determined by the observed

numbers of errors and non-errors. Although the percentage of

errors was significantly larger than zero for most of the observers

in either condition, the values were small. The medians across

observers were 8.3% and 11%, respectively for the equi-contrast

trials and equi-eccentricity trials. The upper limits of all the

confidence intervals were far below 50%, the chance level.

Discussion

We employed a simple decision task with a conjoint measure-

ment design to investigate what people know about their own

visual uncertainty across the retina. In this task, observers were

asked to judge which of two eccentricity-contrast pairs e,cð Þ or

e’,c’ð Þ was more discriminable. We measured the observer’s ability

to discriminate targets varying in contrast and eccentricity

separately in a calibration task. Consequently, we could determine

whether the observer correctly judged which of the two

eccentricity-contrast pairs was more discriminable. We found that

observers’ judgments exhibited large, patterned errors.

Observers may err in judging equally-discriminable pairs, but

be self-consistent in their erroneous judgments. We tested whether

observers’ judgments were transitive. An observer’s judgments are

transitive if and only if, for all choices of eccentricities e,e’,e’’ and

contrasts c,c’,c’’: e,cð Þ] e’,c’ð Þ and e’,c’ð Þ] e’’,c’’ð Þ, then

e,cð Þ] e’’,c’’ð Þ. Seven out of eight observers failed to be transitive,

exhibiting large and patterned errors.

The last test, dominance, assessed whether the observer would

choose the eccentricity-contrast pair with smaller eccentricity if

contrasts were the same or the eccentricity-contrast pair with

larger contrast if eccentricities were equated. An observer need

only have a crude sense that higher contrast leads to better

performance and that performance is better at smaller eccentric-

ities, at least for our choice of stimuli. In particular, an observer

can ‘‘pass’’ dominance without any ability to trade off the

consequences of differences in contrast with differences in

eccentricity. We found significant failures of dominance but the

rate of failure was small and observers were far from the chance

level that would indicate a complete failure of dominance.

The observer maximizes his expected gain by always choosing

the contrast-sensitivity pair that is more readily detectible. If the

probability of detection of one pair is p1 and that of the second is

p2 and p2wp1 then the observer should choose the second. If he

chooses the first then he reduces his winnings by p2{p1 multiplied

by the reward received for a correct response. The consequence of

failures of equivalence, transitivity and dominance, taken together,

was to reduce the expected winnings of all observers by between

10% and 18%.

Previous work amply demonstrates that memory for the location

of targets decays significantly over time [19]. However, in our

experiment each target location were marked by a gray square

present throughout the trials and the discrimination task was to

judge the location of a white dot relative to the gray square.

Consequently, observers’ poor performance in the choice task is

unlikely to be due to any uncertainty concerning the location

where the target would appear.

In conclusion, we find little evidence that observers can

accurately assess their visual sensitivity or even order eccentrici-

ty-contrast pairs consistently. Their consistent patterns of transi-

tivity violation suggest that contrast and eccentricity are treated as

two dimensions that constitute a lexicographic semiorder [20].

We emphasize that the decision task inducing these failures in

judgment was remarkably simple. Since rewards never varied,

failures to judge probability correctly could not be due to assignment

of subjective utilities to rewards. Moreover, any invertible distortion

of probability of the sort commonly found in the decision making

literature [12] would not affect performance in the task at all.

Previous work in cue combination and in motor planning

suggest that the human visuo-motor system has access to estimates

of its own visuo-motor uncertainty in various tasks [21–22].

Human ability to anticipate performance in simple visuo-motor

tasks is well documented. Observers with comparable training in

motor tasks do learn and compensate for their own visuo-motor

variability in later pointing tasks [23–24] and can accurately

estimate their chances of success when shown a rectangular target

and asked to estimate the chances they could hit it [25]. Observers

can also rapidly select which of two pointing target configurations

has higher expected value in a task analogous to ours [26]. In all

these experiments observers considered multiple hypothetical

actions and, without further practice or feedback, selected actions

that maximized expected gain, or nearly so.

Figure 4. Decision task: Results of the three tests. A. Equivalence. For each observer, we estimated 12 eccentricity-contrast pairs e,cð Þ& e’,c’ð Þ
that the observer judged to be equally discriminable. We compare observers’ judgments to actual discrimination performance for that observer
measured in the calibration task. Suppose, for example, that an observer judges 20,Lð Þ ~80,Mð Þ80,Mð Þ, that is, a low contrast target at 20 eccentricity is as
discriminable as a medium contrast target at 80 . Based on calibration performance, we estimate that probability correct for 20,Lð Þ was 0.93 while that
for 80,Mð Þ was 0.61. We plot these probabilities on the vertical colored axes for L (red) and M (blue) and connect them by a straight line with an arrow
at the end corresponding to the eccentricity-contrast pair whose eccentricity varied in the staircase procedure. If the line segment is horizontal then
the observer correctly judged the pairs to be equally discriminable. If the line segment is significantly slanted, the observer is in error. We plotted
each of the 12 pairs judged equally discriminable (four for each possible pair of contrasts) in this way. The labels L, M, and H, or the colors red, blue,
gray, respectively denote low, medium, and high contrasts. Black denotes an insignificant probability difference while magenta denotes a significant
probability difference. The overall significance level is .05, Bonferroni corrected for 12 conditions (that is, each test had a size of .0042 = .05/12). The
observers’ judgments exhibit large, patterned failures. B. Transitivity. Each panel corresponds to one observer. The three axes of the inverse Y
configuration are for the three contrasts. L, M, H denotes low, medium, and high contrasts, respectively. On each axis, the distance of a point to the
center represents the eccentricity of a target, ranging from 10 to 180 on a log scale (see inset). Lines connect eccentricity-contrast pairs of subjective
indifference. For each observer, we started from 1:30,Lð Þ, used the low-to-medium equivalence transformation to locate the eccentricity e for
e,Mð Þ& 1:30,Lð Þ, and then used the medium-to-high mapping to move to the next and so on. If the low-to-medium, medium-to-high, and high-to-

low mappings satisfy transitivity, the fourth point should fall on the starting point. A gap between them implies intransitivity. Observers that
significantly failed the transitivity test are plotted in blue with six mapping lines. The observer that passed the transitivity test is plotted in black
ending at the third mapping line. Notice that all the intransitive mapping lines spiral outward from the center. See text. C. Dominance. Percentage
of errors for each observer and their median in the equi-contrast trials (top) and equi-eccentricity trials (bottom). Error bar denotes the 95%
confidence interval. Dashed lines mark the chance levels.
doi:10.1371/journal.pcbi.1001023.g004
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We consider a very similar task but in a different domain:

judgments of retinal sensitivity as a function of contrast and

eccentricity. In contrast to performance in these visual and motor

tasks, however, our observers not only had markedly distorted

representations of their retinal scaling functions for targets

differing in contrast but also made choices that violated

transitivity.

The observed failure to correctly judge visual sensitivity across

retinal positions agrees well with reports in other areas. Patients

suffering from scotomas (a retinal area with reduced visual acuity)

are typically unaware of the scotoma even when testing reveals

near total loss of visual sensitivity outside the fovea [27]. Most

patients with a central scotoma prefer to use their left visual field to

read, although the right visual field is found to be more efficient in

reading than the left visual field [28–29]. Galvin & Williams [30]

noted that, while objective visual performance in many tasks

plummets with distance from the fovea, human observers seem to

experience a retinal field that is unblurred and more or less

uniform. People were found to have underconfidence and

overconfidence at the same time for visual discrimination

performance of stimuli of different size [31].

Our results suggest that people might have difficulty in

integrating the uncertain visual information from across different

retinal eccentricities to speed search. In fact, people are reported

to be suboptimal at choosing where to saccade [32–35].

One possibility is that observers have inaccurate estimates of

retinal eccentricity [36–37], which make precise mapping between

eccentricity and probability of correct impossible. But the

observers’ transitivity failures suggest the failures are more

profound: people likely do not have consistent estimates of visual

sensitivity at all.
Heuristic-based visual search. Our results are in apparent

conflict with the results of Najemnik & Geisler [7,9–10], which

show good human performance in selection of saccades in visual

search. One possibility is that the visual system has accurate

information concerning visual sensitivity to different targets as a

function of eccentricity but that this information is unavailable for

the sort of comparative judgments we considered here.

But a second possibility is that human visual search is actually

based on simple heuristics plus a qualitative understanding of one’s

visual sensitivity map. Such a heuristic-based approach may

approximate ideal performance in some tasks while failing utterly

in others. The experimenter who considers performance in a

limited range of scenes may record behavior that approximates

optimal but is in fact no more than a lucky coincidence of a

heuristic rule and experimental conditions. Such ‘‘apparent

optimality’’ is not rare in behavioral studies of animals [38] or

humans [39].

The task used by Najemnik & Geisler [7,9–10] involved

detection of a Gabor patch in a 1/f field of noise and only the

overall pattern of saccades was considered in evaluating the model.

In contrast, we designed our simple task so that the visual system

can only succeed if it has access to estimates of visual sensitivity for

the range of contrasts and eccentricities we considered.

Dominance was the only test where subjects predominantly

succeeded and their success could be due to a preference for

higher contrast [34] or a preference for locations closer to the

fovea [32]. According to the errors in the equivalence test, among

the seven observers that failed transitivity, five observers’ decisions

could result from a bias toward selecting the nearer target. In the

context of eye movements, this bias would correspond to a

preference for shorter saccades over longer.

We conjecture that this preference for short saccades could be

an oculo-motor heuristic serving to integrate the visual sensitivity

map into saccade selection. A key prediction of Najemnik &

Geisler’s model [7,9–10] is exactly that observers will prefer short

saccades. Tatler and Vincent [40] presented compelling evidence

that saccade selection could be better predicted by oculo-motor

preferences than by visual information or task.

If human saccade decisions are based on such heuristics rather

than on a computation that requires knowledge of visual sensitivity

maps, we would expect a failure of adjustment when one’s visual

sensitivity map is changed. In fact, when observers’ foveae were

artificially shifted with gaze-contingent techniques, their perfor-

mances in visual search were significantly worse than predicted by

the ideal-observer model [41].

There is evidence that saccade selection and explicit perceptual

decision in visual search pick the same location [42–43]. This was

previously understood as evidence that saccade selection and

explicit decision use the visual sensitivity map in the same way.

However, if humans have little knowledge of their own visual

sensitivity map, as our results suggest, and their saccades are

chosen through oculo-motor heuristics, it might be their explicit

decision actually comes from their saccade behavior. If so, the

observer might have no way of finding out which combination of

eccentricity and contrast offered the higher probability of

successful detection than by observing his preferences among

potential saccades, something like deciding what to have for lunch

by waiting to see which sandwich your hand selects.

Supporting Information

Text S1 Proof for Equation 3.

Found at: doi:10.1371/journal.pcbi.1001023.s001 (0.06 MB

DOC)
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